The Nitty-Gritty of the
Docker API

Houw to be friends with the Docker API

Tom Duffield
@tomduffield




Disclaimer

e The following is based on v1.16 of the API.



Origins of the Talk

I was working on a collection of Docker-related Chef
projects that all used the CLI to communicate with the API.
To avoid shelling out from Ruby and get more control I
wanted to talk to the Docker API itself.

e https://github.com/bflad/chef-docker
e https://github.com/chef/chef-provisioning-docker
e https://github.com/portertech/kitchen-docker



https://github.com/bflad/chef-docker
https://github.com/bflad/chef-docker
https://github.com/chef/chef-provisioning-docker
https://github.com/chef/chef-provisioning-docker
https://github.com/portertech/kitchen-docker
https://github.com/portertech/kitchen-docker

Why am I giving this talk?

e The process of moving these projects from the CLI to
the API was much more difficult than I anticipated.

e The Docker documentation doesn’t cover how to
transition from using the CLI to using the API.

e If your backend is talking to the API, you need to decide
which way you want your users to speak with you: CLI
format or API format.

e The result was a PR to swipely/docker-apit.

[1] https://github.com/swipely/docker-api/pull/231



https://github.com/swipely/docker-api/pull/231

TL;DL

I wrote a Ruby class!! that will convert CLI
input into something you can pass directly to
the API. It is in Ruby but the code is pretty well
documented and all in one place.

[1] https://github.com/swipely/docker-api/blob/lib/docker/container/config.rb



https://github.com/swipely/docker-api/blob/lib/docker/container/config.rb

Why would I use the API?

e Talk to Docker without installing Docker.
o No Access or Permission
m Shared hosts, highly restrictive environments
o No Native Docker Support
m 10S, Android, Windows, OS X
o More “secure”
m No shelling out means no shell vulnerabilities.



Tips for getting started with the API

e Keep on eye on the remote documentation™
e Use existing libraries!?!

[1] https://docs.docker.com/reference/api/docker_remote api/
[2] https://docs.docker.com/reference/api/remote_api_client_libraries/



https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/remote_api_client_libraries/

The Gotchas

e The CLI does a lot of validation and
transformation! on the data before it passes
it to the API.

e If something isn’t documented, the only real
option is to look at the code. If you don’t
know how to read Go code, then you’ll need
to learn.

[1] https://github.com/docker/docker/blob/master/api/client/commands.go



https://github.com/docker/docker/blob/master/api/client/commands.go

Gotcha #1: No auto naming

Those funky names? They come from the CLI.
You need to set your own name when
submitting via the API.

REMOTE API/containers/create?name=NAME



Gotchas #2 & 3: Cmd & Entrypoint

The API “needs” your Cmd and Entrypoint
values to be shellword™ arrays.

'Cmd': ['my app',
'-p', 'paraml',

'-—-long-param', 'param2']

[1] http://ruby-doc.org/stdlib-2.0/libdoc/shellwords/rdoc/Shellwords.html



http://ruby-doc.org/stdlib-2.0/libdoc/shellwords/rdoc/Shellwords.html

Gotcha #4: Device Mapping

In the API, devices require a special mapping.

CLI:
—-—-device=hostPath:containerPath:permissions
API:
'"HostConfig': {'Devices': [{
'PathOnHost': hostPath,
'PathInContainer': containerPath,
'"CgroupPermissions': permissions

b1}



Gotcha #5: Environment Files

IFYOU/COULD'PARSE THAT FILE AND
VALIDATE'ALL THE

& : - _’ vy
\ ‘, A
\. "0 !
-.7 a . W= ” ‘fy ‘
= THAT'WOULD BE{GREAT
L L 1




Gotcha #6: Exposing Ports

No ranges. You need to specify each port
yourself. Hope you like loops! Also, protocols!

CLI:
—-—expose 8000-9000
API:
'ExposedPorts': {
'"tcp/8000': {1},
'"tcp/8001': {1},



Gotcha #7: Memory

In the CLI you can specify memory size in KB, MB or GB.
However, the API only accepts Bytes.

CLI:

——memory 2g

API:
'"Memory': 2000



Gotcha #8: Publish Ports

A single CLI input turns into two API values.

CLI:

—-—-publish ip:hostPort:containerPort/proto

API:
'ExposedPorts': {'containerPort/proto': {}},
'HostConfig': {'PortBindings': {'containerPort/proto': {

'HostPort': hostPort,
'"HostIP': 1p
IR



Gotchas #9: Volumes

A single CLI input turns into two API values.

CLI

—-—volume /host:/container

API

® 'Volumes'
@ 'HostConfig': {'Binds'}



Volumes Example 1 (no host)

CLI:

——volume /contailner

API:

'"Volumes': {'/container': {}}



Volumes Example 2 (with host)

CLI:

——volume /host:/container

API:

'Volumes': {'/container': {}},

'"HostConfig': {'Binds': ['/host:/container']}



Questions?

Tom Duffield
@tomduffield




