
The Nitty-Gritty of the
Docker API

How to be friends with the Docker API

Tom Duffield
@tomduffield

Disclaimer
● The following is based on v1.16 of the API.

Origins of the Talk
I was working on a collection of Docker-related Chef
projects that all used the CLI to communicate with the API.
To avoid shelling out from Ruby and get more control I
wanted to talk to the Docker API itself.

● https://github.com/bflad/chef-docker
● https://github.com/chef/chef-provisioning-docker
● https://github.com/portertech/kitchen-docker

https://github.com/bflad/chef-docker
https://github.com/bflad/chef-docker
https://github.com/chef/chef-provisioning-docker
https://github.com/chef/chef-provisioning-docker
https://github.com/portertech/kitchen-docker
https://github.com/portertech/kitchen-docker

Why am I giving this talk?
● The process of moving these projects from the CLI to

the API was much more difficult than I anticipated.
● The Docker documentation doesn’t cover how to

transition from using the CLI to using the API.
● If your backend is talking to the API, you need to decide

which way you want your users to speak with you: CLI
format or API format.

● The result was a PR to swipely/docker-api[1].

[1] https://github.com/swipely/docker-api/pull/231

https://github.com/swipely/docker-api/pull/231

TL;DL
I wrote a Ruby class[1] that will convert CLI
input into something you can pass directly to
the API. It is in Ruby but the code is pretty well
documented and all in one place.

[1] https://github.com/swipely/docker-api/blob/lib/docker/container/config.rb

https://github.com/swipely/docker-api/blob/lib/docker/container/config.rb

Why would I use the API?

● Talk to Docker without installing Docker.
○ No Access or Permission

■ Shared hosts, highly restrictive environments
○ No Native Docker Support

■ iOS, Android, Windows, OS X
○ More “secure”

■ No shelling out means no shell vulnerabilities.

Tips for getting started with the API

● Keep on eye on the remote documentation[1]

● Use existing libraries[2]

[1] https://docs.docker.com/reference/api/docker_remote_api/
[2] https://docs.docker.com/reference/api/remote_api_client_libraries/

https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/remote_api_client_libraries/

The Gotchas
● The CLI does a lot of validation and

transformation[1] on the data before it passes
it to the API.

● If something isn’t documented, the only real
option is to look at the code. If you don’t
know how to read Go code, then you’ll need
to learn.

[1] https://github.com/docker/docker/blob/master/api/client/commands.go

https://github.com/docker/docker/blob/master/api/client/commands.go

Gotcha #1: No auto naming

Those funky names? They come from the CLI.
You need to set your own name when
submitting via the API.

REMOTE_API/containers/create?name=NAME

Gotchas #2 & 3: Cmd & Entrypoint

The API “needs” your Cmd and Entrypoint
values to be shellword[1] arrays.

'Cmd': ['my_app',

 '-p', 'param1',

 '--long-param', 'param2']

[1] http://ruby-doc.org/stdlib-2.0/libdoc/shellwords/rdoc/Shellwords.html

http://ruby-doc.org/stdlib-2.0/libdoc/shellwords/rdoc/Shellwords.html

Gotcha #4: Device Mapping
In the API, devices require a special mapping.
CLI:

--device=hostPath:containerPath:permissions

API:
'HostConfig': {'Devices': [{

 'PathOnHost': hostPath,

 'PathInContainer': containerPath,

 'CgroupPermissions': permissions

}]}

Gotcha #5: Environment Files

Gotcha #6: Exposing Ports
No ranges. You need to specify each port
yourself. Hope you like loops! Also, protocols!
CLI:

--expose 8000-9000

API:
'ExposedPorts': {

'tcp/8000': {},

'tcp/8001': {},

...

Gotcha #7: Memory
In the CLI you can specify memory size in KB, MB or GB.
However, the API only accepts Bytes.

CLI:
--memory 2g

API:
'Memory': 2000

Gotcha #8: Publish Ports
A single CLI input turns into two API values.
CLI:
--publish ip:hostPort:containerPort/proto

API:
'ExposedPorts': {'containerPort/proto': {}},

'HostConfig': {'PortBindings': {'containerPort/proto': {

 'HostPort': hostPort,

 'HostIP': ip

}}}

Gotchas #9: Volumes
A single CLI input turns into two API values.

CLI
--volume /host:/container

API
● 'Volumes'
● 'HostConfig': {'Binds'}

Volumes Example 1 (no host)
CLI:

--volume /container

API:
'Volumes': {'/container': {}}

Volumes Example 2 (with host)
CLI:

--volume /host:/container

API:
'Volumes': {'/container': {}},

'HostConfig': {'Binds': ['/host:/container']}

Questions?
Tom Duffield
@tomduffield

