
Test-Kitchen Demo
Tom Duffield
 tom@getchef.com
 @tomduffield

1 / 25

Introduction
Test Kitchen is...

"a test harness tool to execute your configured code on one or more platforms in
isolation."

a development utility that provides quick, iterative feedback on code by converging
on and running tests against a running machine.

a tool that helps speed up your infrastructure QA cycle.

an open source project maintained primarily by Fletchor Nichol.

distributed as a RubyGem

2 / 25

The Old Way vs The New Way
The Old Way

Manually test against a live development environment.

3 / 25

For Infracoders...
Dev is Your Prod

4 / 25

The Old Way vs The New Way
The Old Way

Manually test against a live development environment.

Test manually against a one Vagrant box at a time.

Distribute test code to your node as part of your cookbook and use a Chef
Handler like Chef MiniTest Handler to execute tests.

The New Way

Test multiple platforms in parallel.

Keep test code separate from your cookbook.

Integration with Continuous Integration / Continuous Delivery.

10 / 25

Test-Kitchen Components

Driver Plugin code responsible for creating the (virtual) machine used
to test your code.

Provisioner Built-in code responsible for executing your infrastructure code
on the machine.

Platform List of operation systems on which we want to run our code using
the specified Driver.

Suite Defines the scope of the test including what policy to apply (Chef
run_list, Puppet Manifest, Ansible Playbook, etc) and which tests
to run.

Busser RubyGem plugin configured as part of the Suite that executes tests
on your instance.

16 / 25

Getting Started
To get started quickly, simply install the necessary gems.

$ gem install test-kitchen

Once the gem is installed, initialize a working directly. This can either be a chef-repo, a
cookbook, or any other directory.

$ kitchen init
 create .kitchen.yml
 create test/integration/default
 run gem install kitchen-vagrant from "."
Successfully installed kitchen-vagrant-0.14.0
1 gem installed

The output of this initialization command is:

a configuration template (.kitchen.yml)
a skeletal framework for tests (test/integration/default)
the installation of the default Driver (kitchen-vagrant)

17 / 25

Kitchen YAML
driver: vagrant
provisioner: chef_zero

platforms:
- name: ubuntu-12.04
 driver_config:
 box: vagrant-ubuntu-12.04
 box_url: http://files.vagrantup.com/precise64.box
 require_chef_omnibus: true
 run_list:
 - recipe[apt]

suites:
- name: default
 run_list:
 - recipe[postfix]
 - recipe[mysql::server]
 - recipe[ghost::database]
 - recipe[ghost::default]
 - recipe[ghost::nginx]
 attributes:
 mysql:
 bind_address: "127.0.0.1"
 server_root_password: "foobar"
 server_repl_password: "foobar"
 server_debian_password: "foobar"

18 / 25

Sharing Tests

The artifacts created by kitchen init are designed to be stored in source control with
the rest of your automation code.

19 / 25

Don't Share Everything

$ git init
Initialized empty Git repository in /some/local/directory

$ kitchen init
 identical .kitchen.yml
 create .gitignore
 append .gitignore
 append .gitignore
 run gem install kitchen-vagrant from "."
Successfully installed kitchen-vagrant-0.14.0
1 gem installed

If kitchen init is run inside of a git repository, it will configure your .gitignore file
to ignore the .kitchen directory and .kitchen.local.yml

.kitchen directory is where all the run-time data is stored (including running

.vmdks)

.kitchen.local.yml is helpful when there are private values (passwords, secret
keys) and overrides to the default .kitchen.yml.

20 / 25

Demo

21 / 25

Kitchen Command Guarantee
The designers of Test Kitchen have taken great care to ensure that exit codes are always
appropriate.

Test Kitchen will always exit with code 0 if all operations were successful.

Test Kitchen will always exit with non-zero if any part of the operation was
unsuccessful.

This exit code behavior is fundamental for its use in CI/CD pipelines.

22 / 25

kitchen list
Instance is how'll you'll refer to the VM

{suite}-{platform} with punctuation taken out

Driver is the Driver that will be used to control the Instance

Provisioner is the Provisioner that will be used to converge the Instance

Last Action shows the status of the Instance

Not Created
Created - Instance is running but has not been converged.
Converged - Provisioner has successfully run on the Instance.
Verified - kitchen verify has returned with no errors.

23 / 25

kitchen test
1. Destroys the instance if it exists

Cleaning up any prior instances of <default-ubuntu-1204>

2. Creates the instance

Creating <default-ubuntu-1204>

3. Converges the instance

Converging <default-ubuntu-1204>

4. Sets up Busser and runner plugins on the instance

Setting up <default-ubuntu-1204>

5. Verifies the instance by running Busser tests

Verifying <default-ubuntu-1204>

6. Destroys the instance

Destroying <default-ubuntu-1204>

24 / 25

Thanks for listening

25 / 25

