
Everything as a Cookbook
service-oriented thinking for your code

Who is this guy?

Tom Duffield	

Consulting Engineer with Chef

tom@getchef.com

@tomduffield

tduffield

tomduffield.com

Good Practices

• Everyone wants “best practices”…until they don’t.

• These are “good practices,” based on good development practices and what
I have seen work over my numerous years of Chef cookbook development.

There are many established patterns already…

Role Cookbook
Wrapper Cookbook

Application Wrapper Cookbook

Library Cookbook

Environment Cookbook

Cookbook

LWRPS HWRPs

…but developers still have a lot of questions

• When should I use wrapper cookbooks?

• Should a cookbook use node attributes, LWRPs or both to modify behavior?

• Should I write a custom resources as LWRPs or HWRPs?

• Is it still a Library cookbook even though there is more than just Libraries in it?

The Problem
There are clear guidelines on what patterns to use	

 or when to use them.

Solution
Create reusable patterns based on what you	

are trying to automate, not how.

Start by referencing a well established model

Infrastructure as a Service

Platform as a Service

Software as a Service
Implementation of a platform that delivers a working application.

Customizable execution environment.

Basic building blocks for computing.

⌘+C, ⌘+V

Infrastructure (as a) Cookbook

Platform (as a) Cookbook

Application (as a) Cookbook
Implementation of a platform that delivers a working application.

Customizable execution environment.

Basic building blocks for computing.

Global Patterns

Global Patterns

• Recipes should be modular to allow users to be selective about the policies
they enforce.

chef-client	

├── recipes	

│ ├── config.rb	

│ ├── cron.rb	

│ ├── default.rb	

│ ├── delete_validation.rb	

│ ├── service.rb	

│ ├── task.rb

Global Patterns

• Recipes should minimally prescriptive. Don’t force people to subscribe to
unnecessary patterns.

cron/recipes/default.rb

package 'cron' do
 package_name case node['platform_family']
 when 'rhel', 'fedora'
 node['platform_version'].to_f >= 6.0 ? 'cronie' : 'vixie-cron'
 when 'solaris2'
 'core-os'
 end
end
!
service 'cron' do
 service_name 'crond' if platform_family?('rhel', 'fedora')
 service_name 'vixie-cron' if platform_family?('gentoo')
 action [:enable, :start]
end

Global Patterns

• Repeatable patterns for implementation-specific configuration should be
exposed as custom resources instead of recipes.

Exposed by the apache2 cookbook
web_app "my_site" do
 server_name node['hostname']
 server_aliases [node['fqdn'], "my-site.example.com"]
 cookbook "my-site"
 template "my-custom-vhost.conf.erb"
 docroot "/srv/www/my_site"
end
!
web_app "my_site_french" do
 server_name node['hostname']
 server_aliases [node['fqdn'], "fr.my-site.example.com"]
 cookbook "my-site"
 template "my-custom-fr-vhost.conf.erb"
 docroot "/srv/www/my_site_fr"
end

my_site/recipes/web_server.rb

Infrastructure Cookbooks

Infrastructure Cookbooks

• Manage the basic building blocks of your nodes:

• Operating System - package managers like yum, core services like ntp and cron, etc.

• Storage - LVM, RAID, etc.

• Networking - hosts files, DNS, firewalls, route tables, etc.

• Programming Languages - php, perl, ruby, java, etc.

• Development Utilites - Chef runtime libs (chef-sugar), system libs (make, gcc)

Infrastructure Cookbooks

• Cookbooks have no (or very few) dependencies on other cookbooks.

apt/metadata.rb

name 'apt'
maintainer 'Chef Software, Inc.'
maintainer_email 'cookbooks@opscode.com'
license 'Apache 2.0'
description 'Configures apt and apt services'
long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))
version '2.3.9'
!
%w{ ubuntu debian }.each do |os|
 supports os
end

Platform Cookbooks

Platform Cookbooks

• Manage execution environments:

• Execution Runtime - tomcat, nodejs, rails, etc.

• Web Server - apache2, nginx, etc.

• Database - mysql, postgresql, riak, cassandra, etc.

• Monitoring - sensu, zabbix, nagios, etc.

Platform Cookbooks

• Typically depends on a handful of infrastructure cookbooks.

nginx/metadata.rb

name 'nginx'
maintainer 'Opscode, Inc.'
maintainer_email 'cookbooks@opscode.com'
license 'Apache 2.0'
description 'Installs and configures nginx'
version '2.6.3'
!
depends 'apt', '~> 2.2'
depends 'bluepill', '~> 2.3'
depends 'build-essential', '~> 2.0'
depends 'ohai', '~> 1.1'
depends 'runit', '~> 1.2'
depends 'yum-epel', '~> 0.3'

Platform Cookbooks

• Recipes utilize a combination of core Chef and custom resources exposed
by infrastructure and other platform cookbooks.

nginx/recipes/repo.rb

include_recipe 'apt::default'
!
apt_repository 'nginx' do
 uri node['nginx']['upstream_repository']
 distribution node['lsb']['codename']
 components %w(nginx)
 deb_src true
 key 'http://nginx.org/keys/nginx_signing.key'
end

Application Cookbooks

Application Cookbooks

• Implementation of a platform that delivers your application.

• Associated one-to-one with an application - website, api, etc.

• There are only few good examples on the web because these are not really designed
to be shared.

tduffield/myface

Application Cookbooks

• Modularity (again)! Application modules or tiers are broken up into separate
recipes.

myface	

├── metadata.rb	

├── recipes	

│ ├── database.rb	

│ ├── default.rb	

│ └── webserver.rb	

Application Cookbooks

• The default recipe should install a full development stack.

myface/recipes/default.rb

include_recipe 'myface::database'
include_recipe 'myface::webserver'

Application Cookbooks

• Leverages core Chef resources as well as custom resources exposed by
Infrastructure and Platform cookbooks.

myface/recipes/database.rb

mysql_database node['myface']['database']['dbname'] do
 connection mysql_connection_info
end
!
cookbook_file node['myface']['database']['seed_file'] do
 source "myface-init.sql"
 owner "root"
 group "root"
end
!
execute "initialize myface database" do
 command my_mysql_initiate_command
 not_if database_exists?
end

Application Cookbooks

• Instead of defining a run_list in your role, you essentially define your
run_list by using a series of include_recipe statements and Chef
resources.

include_recipe "jenkins::java"
include_recipe "jenkins::master"
!
%w{
 git-client
 token-macro
 git
 github
 github-api
 ghprb
}.each do |plugin|
 jenkins_plugin plugin
end

myface/recipes/ci_server.rb

Application Cookbooks & Roles

• Some people will replace roles entirely with Application Cookbook recipes.

role[myface_ci_server]

Application Cookbooks & Roles

• Some people will replace roles entirely with Application Cookbook recipes.

role[myface_ci_server]

recipe[myface::ci_server]

Application Cookbooks & Roles

• Others will simply map each Application Cookbook recipe 1:1 with a role.

{
 "name": "myface_ci_server",
 "run_list": ["myface::ci_server"]
}

roles/widget_web_server.json

Application Cookbooks & Roles

• Others will simply map each Application Cookbook recipe 1:1 with a role.

!

!

!

!

• Which one should you choose?

• Whichever you feel most comfortable with!

• I have used both in production before.

{
 "name": "myface_ci_server",
 "run_list": ["myface::ci_server"]
}

roles/widget_web_server.json

Application Cookbooks

• Control cookbook version constraints of your application in your metadata.rb

myface/metadata.rb

name 'myface'
maintainer 'Tom Zuckerberg'
maintainer_email 'tom.zuckerberg@myface.co.uk'
license 'Apache 2.0'
description 'Installs/Configures myface'
long_description IO.read(File.join(File.dirname(__FILE__), 'README.md'))
version '2.0.0'
!
depends 'apache2', '~> 1.8.0'
depends 'mysql', '~> 4.0.0'
depends 'database', '~> 1.6.0'
depends 'php', '~> 1.3.0'

Application Cookbooks & Environments

• Control the cookbook constraints of your Application Cookbooks in your
environment files.

{
 "name": "production",
 "cookbook_versions": {
 "myface": "1.0.0",
 "theirface": "0.8.0"
 }
}

environments/production.json

Application Cookbooks & Environments

• This pattern allows you to have multiple versions of a dependent cookbook
in the same environment without issues.

{
 "name": "production",
 "cookbook_versions": {
 "myface": "= 1.0.0",
 "theirface": "= 0.8.0"
 }
}

{
 "name": "production",
 "cookbook_versions": {
 "apache": "4.0.0",
 "mysql": "5.0.0"
 }
}

Everyone in production will need
to use apache v4.0.0

But here, myface could use
apache v4.0 and theirface

 could use v3.8.

In Summary

• Recipes should be modular to allow users to be selective about the policies
they enforce.

• Recipes should minimally prescriptive. Don’t force people to subscribe to
unnecessary patterns.

• Repeatable patterns for implementation-specific configuration should be
exposed as custom resources instead of recipes.

• Classify your cookbooks as Infrastructure, Platform and Application to

• Help visualize the interactions between your different cookbooks.

• Help keep your cookbooks modular and reusable.

Thank You

Office Hours

• Today at 2:05 to 2:20 in Marina (right after this talk)

• Otherwise, reach out to me online:

tom@getchef.com

@tomduffield

tduffield

tomduffield.com

Questions?

tom@getchef.com @tomduffield tomduffield.com

